保护环境已经成为我国经济持续发展的基本国策,因此,废水处理应符合我国制定的环境保护法规和方针政策。在环保的规划设计中,必须把生产观点和生态观念、环境保护结合起来统筹考虑,把治理废水和改进生产工艺、 实行清洁生产结合起来统筹考虑。通过系统的分析和考证,寻求比较合理的治理方案。环保管理的主要原则归纳起来有以下几点: (1) 淘汰不合理的产品 对于一些传统的、低产值的、废水治理难度极大的垃圾
废水和其中的污染物是生产工艺过程的产物,因此改革生产工艺,实行清洁生产是消灭或减少废水危害的根本措施。通过工艺及设备的改革可以把废水消灭于生产过程之中,这样既可以提高原辅材料的利用率,又可减少废水 的处理费用。这方面工作应由生产工艺工程师及环境工程师共同合作完成。应该认识到保护环境不只是环境工程师的工作,而是要从污染源头进行控制,这样才能真正把废水治理好。因此,在工艺设计、产品试制时就要考虑
废水中有许多有机物质,含有十几种、几十种,甚至上百种有机物质的废水也是能经常遇到的,如果对废水中的有机物质一一进行定性定量的分析,既耗时间,又耗药品。那么能不能只用一个污染指标来表示废水中所有的有 机物质及其它们的数量呢?环境科学工作者经过研究发现,所有的有机物质都有二个共性:一是它们至少都由碳氢组成;二是绝大多数的有机物质能够化学氧化或被微生物氧化,它们的碳和氢分别与氧形成无毒无害的二氧化
化学需氧量(COD)是指废水中能被氧化的物质在被化学氧化剂氧化时,所需要的氧量,以氧的毫克/升作为单位。它是目前用来测定废水中有机物含量的一种最常用的手段。COD分析中常用的氧化剂有高锰酸钾(锰法CODMn) 和重铬酸钾(铬法CODCr),现在常用重铬酸钾法。废水在强酸加热沸腾回流条件下对有机物实行氧化,用硫酸银作催化剂时可以使大多数的有机物的氧化率提高到85-95%。如果废水中含有较高浓度
生化需氧量也可以表征废水被有机物污染的程度,最常用的为五日生化需氧量,以BOD5表示,它表示废水在微生物存在下进行生化降解五日内所需要的氧的数量。今后我们将经常使用五日生化需氧量。
有的有机物是可以被生物氧化降解的(如葡萄糖和乙醇),有的有机物只能部分被生物氧化降解(如甲醇),而有的有机物是不能被生物氧化降解的而且还具有毒性(如银杏酚、银杏酸、某些表面活性剂)。因此,我们可以 把水中的有机物分成二个部分,即可以生化降解的有机物和不可生化降解的有机物。 通常认为COD基本上可表示水中的所有的有机物。而BOD为水中可以生物降解的有机物,因此COD与BOD的差值可以表示废水
废水中许多比重大于1的杂质悬浮物、大颗粒、易沉降的悬浮物都可以用自然沉降、离心等方法去除。 但比重小于1的、微小的甚至肉眼无法看到的悬浮物颗粒则很难自然沉降,如胶体颗粒是10-4-10-6mm大小的微粒,在水中非常稳定,它的沉降速度极慢,沉降1m需耕时200年。沉降慢的原因有二个,(1)一般来说,胶体粒子 都带有负电荷,由于同性相斥的原因,从而阻止胶体微粒间的接触,不能被彼此粘合,悬浮于水
在废水中投加带正离子的混凝药剂,大量正离子在胶体粒子之间的存在以消除胶体粒子之间的静电排斥,从而使微粒聚结,这种通过投加正离子电解质的方法,使得胶体微粒相互聚结的过程称为凝聚。常用地凝聚剂有硫酸铝 、硫酸亚铁、明矾、氯化铁等。
絮凝是在废水中加入高分子混凝药剂,高分子混凝药剂溶解后,会形成高分子聚合物。这种高聚物的结构是线型结构,线的一端拉着一个微小粒子,另一端拉着另一个微小粒子,在相距较远两个粒子之间起着粘结架桥的作用 ,使得微粒逐渐变大,最终形成大颗粒的絮凝体(俗称矾花),加速颗粒沉降。常用的絮聚剂有聚丙烯酰胺(PAM)、聚铁(PE)等。
聚铁在混凝过程中形成氢氧化铁絮体具有很好的吸附废水中有机物质的能力,实验数据表明,废水用聚铁絮凝吸附后,可以去除废水中COD的10%-20%左右,这样可以大大地减轻生化池的运行负担,有利于处理废水的达标排放 。另外,用聚铁进行混凝预处理可以将废水中对微生物有毒害、有抑制作用的微量物质去除,以保证生化池中的微生物能正常运行。在诸多混凝药剂中,聚铁的价格相对来说比较便宜(25-300元/吨),因
凝聚与絮凝结合在一起使用的过程为混凝过程。混凝在实验或工程上被经常应用,如先在水中投加硫酸亚铁等药剂,消除胶体粒子之间的静电排斥,然后再投加聚丙烯酰胺(PAM),使得微粒逐渐变大,形成肉眼可见的矾花, 最后产生沉降。
利用多孔性固体(如活性炭)或絮体物质(如聚铁)将废水中的有毒有害物质吸附在固体或絮体的表面上或微孔内,达到净化水质的目的,这种处理方法称作为吸附处理。吸附的对象可以是不溶性固体物质,也可以是溶解性 物质。吸附处理的效率高,出水水质好,因此常作为废水深度处理。也可在生化处理单元中引入吸附处理,以提高生化处理效率(如PACT法就是其中的一种)。
铁炭处理法又称铁炭微电解法或铁炭内电解法,它是金属铁处理废水技术的一种应用形式,用铁炭法作为预处理技术来处理有毒有害、高浓COD废水具有一种独特的效果。铁炭法的处理机理目前尚未完全清楚,现在比较认同的 一种解释是:在酸性条件下,铁与炭之间形成无数个微电流反应池,有机物在微电流的作用下被还原氧化。铁炭出水再用石灰或石灰乳中和,生成的Fe(OH)2胶体絮状物对有机物具有很强的絮凝吸附能力。因此,
用硫酸调节成pH为2废水经过铁炭处理后,硫酸成为硫酸亚铁,废水的pH值从2升高至5-6,那么铁炭出水为什么还要用石灰粉进行中和处理呢?或者中和处理时是不是可以少加一些石灰粉呢? 铁炭出水中含有大量的硫酸亚铁,如果不予去除的话,会影响后续生化池中微生物的生长繁殖,因此我们必须要用石灰将废水的pH值从5-6再调高至9以上,使水溶性的硫酸亚铁转化成不溶性的氢氧化亚铁与硫酸钙,然后通过 混凝沉降的
废水的生物化学处理是废水处理系统中最重要的过程之一,简称生化处理。生化处理是利用微生物的生命活动过程将废水中的可溶性的有机物及部分不溶性的有机物有效地去除,使水得到净化。事实上,我们对生化处理并不 是很陌生的,天然的水体中存在着一条食物链,即大鱼吃小鱼,小鱼吃虾米,虾米吃小虫,小虫吃微生物,微生物吃污水,如果没有这条食物链,自然界就要乱套了。在天然的河流中,有着大量的、依靠有机物生活的微生物
由于废水中存在碳水化合物、脂肪、蛋白质等有机物,这些无生命的有机物是微生物的食料,一部分降解、合成为细胞物质(组合代谢产物),另一部分降解氧化为水份,二氧化碳等(分解代谢产物),在此过程中废水中的 有机污染物被微生物降解去除。
微生物除了需要营养,还需要合适的环境因素,如温度、pH值、溶解氧、渗透压等才能生存。如果环境条件不正常,会影响微生物的生命活动,甚至发生变异或死亡。
在废水生物处理中,微生物最适宜的温度范围一般为16-30℃,最高温度在37-43℃,当温度低于10℃时,微生物将不再生长。 在适宜的温度范围内,温度每提高10℃,微生物的代谢速率会相应提高,COD的去除率也会提高10%左右;相反,温度每降低10℃,COD的去除率会降低10%,因此在冬季时,COD的生化去除率会明显低于其它季节。
混合液悬浮固体(MLSS)亦要称为污泥浓度,它是指单位体积生化池混合液所含干污泥的重量,单位为毫克/升,用来表征活性污泥浓度。它包括有机物和无机物两部分。一般来说SBR生化池内MLSS值控制在2000-4000mg/L左右 为宜。
水中溶解氧的浓度可以用Henry定律来表示:当达到溶解平衡时: C=KH*P 其中:C为溶解平衡时水中氧的溶解度; P为气相中氧的分压; KH为Henry系数,与温度有关;增加曝气努力使氧的溶解接近平衡,而同时活性污泥还会消耗水中的氧。因此废水中实际溶解氧量与水温、有效水深(影响压力)、曝气量、污泥浓度、盐度等因素有关。 48、生化过程中微生物所需的氧气由谁提供?